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\M\ Introduction @

= Application Example: Marketing

. — Given:
« Large data base of customer data containing
‘ ‘_ ‘ their properties and past buying records
— Goal:
‘ ‘.H « Find groups of customers with similar behavior
« Find customers with unusual behavior
[ | L ®
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= Application Example:
Class Finding in CAD-Databases
— Given:

« Large data base of CAD data containing abstract
feature vectors (Fourier, Wavelet, ...)

— Goal:
« Find homogeneous groups of similar CAD parts
« Determine standard parts for each group

« Use standard parts instead of special parts
(- reduction of the number of parts to be produced)
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Problem Description
= Given:
| 1 A data set with N d-dimensional data items.

| e

Determine a (good/natural) partitioning of
‘. the data set into a number of clusters (k)
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From the Past ...

= Clustering is a well-known problem in
statistics [Sch 64, Wis 69]

= more recent research in
— machine learning [Roj 96],

— databases [CHY 96], and
— visualization [Kei 96] ...

and noise.
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... to the Future

- » Effective and efficient clustering algorithms for

i large high-dimensional data sets with high
W noise level

= Requires Scalability with respect to
‘. — the number of data points (N)

— the noise level

— the number of dimensions (d)
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\M\ Clustering Methods

‘= = Model- and Optimization-Based
B Approaches

B . Density-Based Approaches
= Hybrid Approaches
o y pp
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= Determine k prototypes of a given data
= Optimize a distance criteria: Z Zd(n,X‘,-)/N
= Iterative Algorithm: o

*Assign the data points to the nearest prototype
«Shift the prototypes towards the mean of their point set

K-Means [ruk 9
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‘“IM Expectation Maximization [Lau 95 @

= Estimate parameters of k Gaussians
|

= Optimize the probability, that the mixture
of parameterized Gaussians fits the data

= lterative algorithm similar to k-Means
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Al Methods (ri o5, kms+a1

= Self-Organizing Maps [roj 96, kMs 91] 1
Eo

— Fixed map topology
(grid, line)

= Growing Networks [Fri 95]

— Iterative insertion of
nodes

— Adaptive maptopology_-.’. { ii
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= Medoid Method:

- — Medoids are special
Il | data points o= -
BB - Alldatapoints are 45 3 g
assigned to the ] :
\. nearest medoid

= Optimization Criterion:
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= Graph Interpretation:

(- — Search process can be symbolized by a graph
— Each node corresponds to a specific set of medoids
‘ -\ — The change of one medoid corresponds to a jump to a

neighboring node in the search graph

L | = Complexity Considerations:
— The search graph has E:Enodes and each node
‘ .‘ has N*k edges
— The search is bound by a fixed number of jumps (num_local)
in the search graph

— Each jump is optimized by randomized search and costs
m max_neighbor scans over the data (to evaluate the cost

function)
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= Hierarchical Grid
Clustering [Sch 96]

Density-based Methods

= Linkage -based
Methods [Boc 74]

= DBSCAN [EKS+ 96] = WaveCluster [SCZ 98]
s DBCLASD [XEK+98] = DENCLUE [HK 98]
= STING [WYM 97]

‘I‘ Linkage -based Methods @

(from Statistics) [Boc 74]
= Single Linkage (connected components for distance d)
| . Je —a
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» Method of Wishart wis 69] (Min. no. of points: c=4)
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DBSCAN [exs+ 9

= Clusters are defined as

‘\I‘ DBSCAN

= For each point, DBSCAN determines the

e-environment and checks, whether it contains
more than MinPts data points

i | = DBSCAN uses index structures for determining
H.\ the g-environment

= Arbitrary shape clusters found by DBSCAN
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= Distribution-based method

= Assumes arbitrary-shape
clusters of uniform distribution

= Requires no parameters

= Provides grid-based
approximation of clusters
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DBCLASD

» Definition of a cluster C based on the

distribution of the NN-distance (NNDistSet):

L AYIsey C) has the expeceed dixnbution with a
required confidence level.
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DBCLASD

= Step (1) uses the concept of the x2-test
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= Incremental augmentation of clusters by
neighboring points (order-dependent)

— unsuccessful candidates are tried again later

— points already assigned to some cluster may
switch to another cluster

STING wym o7

= Uses a quadtree-like structure for
condensing the data into grid cells

= The nodes of the quadtree
contain statistical |
information about the data T S
in the corresponding cells =" = T L=

= STING determines clusters
as the density-connected
components of the grid

= STING approximates the
clusters found by DBSCAN

| |

Hierarchical Grid Clustering @
[Sch 96]

= Organize the data space as a
grid-file
= Sort the blocks by their density

DB = — BBy B e g
L L3
= Scan the blocks iteratively and A
merge blocks, which are adjacent - »

over a (d-1)-dim. hyperplane.
= The order of the merges forms
a hierarchy

WaveCluster (scz 9 @

» Clustering from a signal processing perspective
using wavelets
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WaveCluster

= Signal transformation using wavelets

W

= Arbitrary shape clusters found by WaveCluster at
different resolutions
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Data Set Influence Function Density Function

Influence Function: Influence of adata point in its
neighborhood

Density Function: Sum of the influences of all data
‘ points

H‘I‘\ DENCLUE

Influence Function

The influence of a data point y at a point x in the data
space is modeled by a function fo FY L 0O,

. Density Function
The density at a point x in the data space is defined as
the sum of influences of all data points x;, i.e.
N

_d(xy)? 5
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HI‘\ DENCLUE @
: Definitions of Clusters
2
o
[

- Density Attractor/Density-Attracted Points (%)
- local maximum of the density function
- density-attracted points are determined by a

\‘I\ DENCLUE

Center-Defined Cluster
W0 A  center-defined  cluster  with

Density

1 density-attractor x* ( f2 (x*) > &) is
the subset of the database which
‘ .‘ is density-attracted by x*.

Multi-Center-Defined
Cluster

A multi-center-defined cIusterD/\ + /\

consists of a set of center-defined

ty

ensi

Cluster 1 Cluster 2 Cluster 3

clusters which are linked by a path it 1 Ouaa 2
j with significance &.

®

X
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Hl ‘ gradient-based hill-climbing method

| DENCLUE &

Impact of different Significance Levels (&)
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Choice of the Smoothness Level ()

‘s Choose ¢ such that number of density
- attractorsis constant for along interval of o!

»
I | L
#clusters E

-
Onin o-opl o Opax

|| DENCLUE by

Variation of the Smoothness Level (g)

| DENCLUE ®

DENCLUE generalizes other clustering methods:

L = density-based clustering
(e.g., DBSCAN: Square Wave influence function,
H-‘ multi-center-defined clusters, o = EPS, & =MinPts)

W . partition-based clustering
(e.g., k-means Clustering: Gaussian influence

‘.‘ function, center-defined clusters, & =0,
determine o such that k clusters)

hierarchical clustering
M (center-defined clusters for different values of o form

hierarchy)

| DENCLUE by

Noise I nvariance

Assumption: Noise is uniformly distributed in the data space

Lemma:
=
H-\ [The density-attractors do not change when]

increasing the noise level.

‘ ‘.‘ Idea of the Proof:
- partition density function into signal and noise

FO(x) = FP(x)+ fN(x)

‘\I‘ DENCLUE @

Noise I nvariance

M “3240123

Dl

bdhviloamw odioana
7

J.“ - density function of noise approximates aconstant (f " (x) = const.)

Noise I nvariance

‘w DENCLUE @
L
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= BIRCH [ZRL 96]

= CLIQUE [AGG+ 98]

BIRCH

®

Basic Idea of the CF-Tree

= Condensation of the data]-X; } using

CF-Vectors CF = (N, L5, 55)
- + =2
.I'...'_:-'=E':'-r"l_:I X 585 =E{i] -

= CF-tree uses sum of CF-vectors to
build higher levels of the CF-tree

BIRCH (zrL 9 @
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CF-Tree
Construction
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BIRCH @

Insertion algorithm for a point x:
(1) Find the closest leaf b
(2) If x fits in b, insert x in b;
otherwise split b
(3) Modify the path for b
(4) If tree is to large, condense the tree
by merging the closest leaves

CLIQUE (acc+ 58 @

= Subspace Clustering

.. |

= Monotonicity Lemma: 17 777777
If a collection of points Sis a v
cluster in a k-dimensional space, LT TRl
then S is also part of a cluster in S  EEREEEE
any (k-1)-dimensional projection

of this space. ik EN. IR AN

= Bottom-up Algorithm vyt
for determining the -
projections




1 CLIQUE

= Cluster description in disjunctive

i 7]
normal Form £l
ik

“I‘ Scalability Problems

\mm = Effectiveness degenerates
‘ -‘ — with dimensionality (d)
H.‘ — with noise level
= Efficiency degenerates
‘ .‘ — linearly with no of data points (N) and

|

— exponentially with dimensionality (d)

‘I‘ Hierarchical Variant of
|

DENCLUE k og

= DENCLUE is able to determine a hierarchy of

S Cluster using smoother kernels (0,;,<0 <0,,)
i | X
L | —
#elusters —
[ | g

p— el
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Techniques for Improving the @
Efficiency and Effectiveness

= Hierarchical Variants of Cluster Algorithms
(for Improving the Effectiveness)

= Scaling Up of Cluster Algorithms
(for Improving the Efficiency)
— Sampling Techniques
— Bounded Optimization Techniques
— Indexing Techniques
— Condensation Techniques
— Grid-based Techniques

| |

Hierarchical Variant of
WaveCluster (scz o

®

= WaveCluster can be used to perform
multiresolution clustering

» Using coarser grids, cluster start to
merge

" o,
003 1303
%a - -l'..I % . -

®

Building Hierarchies (0)




‘\I‘ Scaling Up of Cluster AIgorithms@

‘mm = Sampling Techniques [EKX 95]
/I - Bounded Optimization Techniques [NH 94]
B - Indexing Techniques [BK 98]

= Condensation Techniques [ZRL 96]

» Grid-based Techniques [SCZ 98, HK 98]

HIH Sampling [exx 95] @

» R*-Tree Sampling

= Comparison of Effectiveness versus
B Efficiency (example CLARANS)

H.H =1
&
¥
a
‘ ‘.‘ |
i
¥

R
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“I‘ Bounded Optimization (v o @

s = CLARANS uses two bounds to restricts
the optimization: num_local, max_neighbor

B = Impact of the Parameter:
—num_local Number of iterations
| | — max_neighbors ~ Number of tested

neighbors per iteration

HIH Indexing [BK 98] @

" Cluster algorithms and their index

structures
‘ H- | — BIRCH: CF-Tree [zRrL 96]
M _DBSCAN: R*-Tree [cutsq
X-Tree [BKK 96] (range queries)
il | — WaveCluster: Grid / Array [scz 98]

— DENCLUE: B*-Tree, Grid / Array [HK 98]

| |

“I‘ Condensing Data @

= BIRCH [zRL 96]:

(/-

— Phase 1-2 makes a condensed
i | representation of the data (CF-tree)
| — Phase 3-4 applies a separate cluster

algorithm to the leafs of the CF-tree
= Condensing data is crucial for efficiency

I

o
L e s,

Data CF-Tree condensed CF-Tree Cluster

‘ ‘IH R-Tree: [Gut84] @

The Concept of Overlapping Regions

L drecry %
_ dilrectlorzy -
™ e )ﬂ%

- = Digesp

m ‘ % | |$® ‘ ‘ N ‘ exact representation
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Variants of the R-Tree

Low-dimensional

» R*-Tree [SRF 87]

= R*-Tree [BKSS 90]

» Hilbert R-Tree [KF94]

High-dimensional
n TV-Tree [LIF 94]
n X-Tree [BKK 96]
= SS-Tree [WJ 96]
= SR-Tree [KS 97]

®

H”“ Effects of High Dimensionality @

L ocation and Shape of Data Pages

[ .
= Data pages have large extensions

- = Most data pages touch the surface
B of the data space on most sides

|

The X-Tree [BKK 96]

(eXtended-Node Tree)
= Motivation:

®

Performance of the R-Tree degenerates in

high dimensions
= Reason: overlap in the directory

g e rrgl:
wablis 1] ppais b [

HI“ The X-Tree @

.
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Tree

Point Query

Speed-Up of X-Tree over the R*- @

10 NN Query

Hl ' Supernodes Normal Directory Nodes () Data Nodes

H”“ Grid Approaches WaveCluster @

= WaveCluster [scz 98]

| T

— Partition the data space by a grid - reduce the
| number of data objects by making a small error
‘ ‘.H — Apply the wavelet-transformation to the reduced

feature space
— Find the connected components as clusters

| ‘.‘ = Compression of the grid is crucial for the

= Does not work in high dimensional space!

efficiency
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Selectivity of Range Queries

(-
= The selectivity depends on the volume of the query

|
H.‘ e = - :

‘ .‘ . F
.
T

E L .

selectivity =0.1 %
m O no fixed e-environment (as in DBSCAN)

\‘JIM Effects of High Dimensionality @

Selectivity of Range Queries

0 = In high-dimensional data spaces, there exists a
region in the data space which is affected by ANY
‘ ‘_ ‘ range query (assuming uniformly distributed data)

0O difficult to build an efficient index structure
m O no efficient support of range queries (as in DBCLASD)

‘I‘ Effects of High Dimensionality @

The Surfaceis Everything

" Probability that a point is closer than 0.1
-, to a (d-1)-dimensional surface

- :

‘ .‘ N

0.1
0 0.1 091

m O no of directions (from center) increases exponentially

\‘JIM Effects of High Dimensionality @

Number of Surfacesand Grid Cells

- = Number of k-dimensional surfaces in a
d-dimensional hypercube?

-
-

= Number of grid cells

‘. resulting from a binary 00
partitioning?

20 000 100

O grid cells can not be stored explicitly
m O most grid cells do not contain any data points

‘\I‘ DENCLUE Algorithm [x s @

I Basic ldea

- = Use Local Density Function which
H.‘ approximates the Global Density Function

‘.‘ = Use CubeMap Data Structure for efficiently

locating the relevant points

\‘Jl‘\ DENCLUE @
|

Local Density Function

Definition
5 The local density f(x) is defined as
- PM= TR
- s
Lemma (Error Bound)
\. If near(x) ={x OD|d(x x)<ka}, the error is bound

Error = dZe 2’ < |{x OD|d(x,x)>ka}||@ 2
%D, d(X

X)>ka

by: _d(xx%)? K2
I
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Data Structure based on regular cubes for storing the data
and efficiently determining the density function

“H‘ DENCLUE Algorithm @

i
B DENCLUE (D, o, ¥)
(8) MBR — DetermineMBR(D)
\ \.\ (b)C, ~ DetPopCubes(D, MBR, o)
C,, < DetHighlyPopCubes(C,, &)
(¢) map,C, — ConnectMap(C,,C,,,0)

MI‘ Summary and Conclusions

= A number of effective and efficient Clustering
— Algorithms is available for small to medium
| size data sets and small dimensionality

H-‘ = Efficiency suffers severely for large
dimensionality (d)

\.‘ = Effectiveness suffers severely for large
dimensionality (d), especially in combination
with a high noise level

m (d) clusters — DetDensAttractors(map,C,,0,¢)

“H‘ Open Research Issues

» Efficient Data Structures for large N
|| - and large d

[l = Clustering Algorithms which work effectively
H-‘ for large N, large d and large Noise Levels

» Integrated Tools for an Effective Clustering
H-\ of High-Dimensional Data

interactive clustering techniques)
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