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Introduction
■ Application Example: Marketing

– Given:
• Large data base of customer data containing

their properties and past buying records

– Goal:
• Find groups of customers with similar behavior

• Find customers with unusual behavior

Introduction
■ Application Example:

Class Finding in CAD-Databases
– Given:

• Large data base of CAD data containing abstract
feature vectors (Fourier, Wavelet, ...)

– Goal:
• Find homogeneous groups of similar CAD parts

• Determine standard parts for each group

• Use standard parts instead of special parts
(→ reduction of the number of parts to be produced)

Introduction

Problem Description
■ Given:

A data set with N  d-dimensional data items.

■ Task:
Determine a (good/natural) partitioning of
the data set into a number of clusters (k)
and noise.

Introduction

From the Past ...

■ Clustering is a well-known problem in

statistics [Sch 64, Wis 69]

■ more recent research in
– machine learning [Roj 96],

– databases [CHY 96], and

– visualization [Kei 96] ...

Introduction

... to the Future
■ Effective and efficient clustering algorithms for

large high-dimensional data sets with high
noise level

■ Requires Scalability with respect to
– the number of data points (N)

– the number of dimensions (d)

– the noise level
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Clustering Methods

■ Model- and Optimization-Based

Approaches

■ Density-Based Approaches

■ Hybrid Approaches

■ Determine k prototypes of a given data

■ Optimize a distance criteria:

■ Iterative Algorithm:

K-Means [Fuk 90]
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•Assign the data points to the nearest prototype
•Shift the prototypes towards the mean of their point set

Expectation Maximization [Lau 95]

■ Estimate parameters of k Gaussians

■ Optimize the probability, that the mixture
of parameterized Gaussians fits the data

■ Iterative algorithm similar to k-Means

■ Self-Organizing Maps [Roj 96, KMS 91]

– Fixed map topology 
(grid, line)

■ Growing Networks [Fri 95]

– Iterative insertion of
nodes

– Adaptive map topology

AI Methods [Fri 95, KMS+91] CLARANS [NH 94]

■ Medoid Method:
– Medoids are special

data points

– All data points are
assigned to the
nearest medoid

■ Optimization Criterion:



■ Graph Interpretation:
– Search process can be  symbolized by a graph
– Each node corresponds to a specific set of medoids
– The change of one medoid corresponds to a jump to a

neighboring node in the search graph

■ Complexity Considerations:
– The search graph has      nodes and each node

has N*k edges
– The search is bound by a fixed number of jumps (num_local)

in the search graph
– Each jump is optimized by randomized search and costs

max_neighbor scans over the data (to evaluate the cost
function)

CLARANS
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Density-based Methods

■ Linkage -based
Methods [Boc 74]

■ DBSCAN [EKS+ 96]

■ DBCLASD [XEK+ 98]

■ STING [WYM 97]

■ Hierarchical Grid
Clustering [Sch 96]

■ WaveCluster [SCZ 98]

■ DENCLUE [HK 98]

Linkage -based Methods
(from Statistics) [Boc 74]

■ Single Linkage (Connected components for distance d)

■ Method of Wishart [Wis 69] (Min. no. of points: c=4)

Reduce data set Apply Single Linkage

■ Clusters are defined as
Density-Connected Sets (wrt. MinPts, ε)

DBSCAN [EKS+ 96]

DBSCAN
■ For each point, DBSCAN determines the

ε-environment and checks, whether it contains
more than MinPts data points

■ DBSCAN uses index structures for determining
the ε-environment

■ Arbitrary shape clusters found by DBSCAN

■ Distribution-based method

■ Assumes arbitrary-shape
clusters of uniform distribution

■ Requires no parameters
■ Provides grid-based

approximation  of clusters

DBCLASD [XEK+ 98]

Before the
insertion
of point p

After the
insertion
of point p



DBCLASD

■ Definition of a cluster C based on the
distribution of the NN-distance (NNDistSet):

DBCLASD

■ Step (1) uses the concept of the χ2-test

■ Incremental augmentation of clusters by
neighboring points (order-dependent)

– unsuccessful candidates are tried again later
– points already assigned to some cluster may  

switch to another cluster

STING [WYM 97]

■ Uses a quadtree-like structure for
condensing the data into grid cells

■ The nodes of the quadtree
contain statistical
information about the data
in the corresponding cells

■ STING determines clusters
as the density-connected
components of the grid

■ STING approximates the
clusters found by DBSCAN

Hierarchical Grid Clustering
[Sch 96]

■ Organize the data space as a
grid-file

■ Sort the blocks by their density

■ Scan the blocks iteratively and
merge blocks, which are adjacent
over a (d-1)-dim. hyperplane.

■ The order of the merges forms
a hierarchy

WaveCluster [SCZ 98]

■ Clustering from a signal processing perspective
using wavelets

WaveCluster

■ Signal transformation using wavelets

■ Arbitrary shape clusters found by WaveCluster at
different resolutions



DENCLUE [HK 98]

Data Set 

Fig 1b

Fig 1c

Density Function

  Density Function: Sum of the influences of all data
points

Influence Function

  Influence Function: Influence of a data point in its 
neighborhood

Density Function
The density at a point x in the data space is defined as
the sum of influences of all data points xi, i.e.

Influence Function
The influence of a data point y at a point x in the data

space is modeled by a function                       ,
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DENCLUE

DENCLUE

Density Attractor/Density-Attracted Points
- local maximum of the density function
- density-attracted points are determined by a

gradient-based hill-climbing method

DENCLUE
Definitions of Clusters

(    )

DENCLUE

Center-Defined Cluster
A center-defined cluster with
density-attractor x* (                  ) is
the subset of the database which
is density-attracted by x*.

Multi-Center-Defined
Cluster
A multi-center-defined cluster
consists of a set of center-defined
clusters which are linked by a path
with significance ξ.

ξ>*)(xf D
B

Cluster 1 Cluster 3Cluster 2

ξ

Cluster 1 Cluster 2

ξ

         Cluster 1 Cluster 2

ξ

DENCLUE
Impact of different Significance Levels (ξ)



Choose  σ  such that number of density
attractors is constant for a long interval of σ!

#clusters

σmin σmaxσ   σopt

DENCLUE
Choice of the Smoothness Level (σ)

DENCLUE

Variation of the Smoothness Level (σ)

DENCLUE

DENCLUE generalizes other clustering methods:

■ density-based clustering
(e.g., DBSCAN:  Square Wave influence function,
multi-center-defined clusters, σ = EPS, ξ =MinPts)

■ partition-based clustering
(e.g., k-means Clustering:  Gaussian influence
function, center-defined clusters, ξ = 0,
determine σ such that k clusters)

■ hierarchical clustering
(center-defined clusters for different values of σ form
hierarchy)

)()()( xfxfxf NDD C +=
- density function of noise approximates a constant .))(( constxf N ≈

Idea of the Proof:
- partition density function into signal and noise

Assumption: Noise is uniformly distributed in the data space

Lemma:

The density-attractors do not change when
increasing the noise level.

DENCLUE

Noise Invariance

DENCLUE

Noise Invariance

DENCLUE

Noise Invariance



Hybrid Methods

■ BIRCH [ZRL 96]

■ CLIQUE [AGG+ 98]

BIRCH [ZRL 96]

Clustering
in BIRCH

Basic Idea of the CF-Tree

■ Condensation of the data         using  
CF-Vectors 

■ CF-tree uses sum of CF-vectors to
build higher levels of the CF-tree

BIRCH BIRCH

Insertion algorithm for a point x:
(1) Find the closest leaf b

(2) If x fits in b, insert x in b;
otherwise split b

(3) Modify the path for b
(4) If tree is to large, condense the tree
      by merging the closest leaves

BIRCH

CF-Tree

Construction

CLIQUE [AGG+ 98]

■ Subspace Clustering
■ Monotonicity Lemma:

If a collection of points S is a
cluster in a k-dimensional space,
then S is also part of a cluster in
any (k-1)-dimensional projection
of this space.

■ Bottom-up Algorithm
for determining the
projections



CLIQUE

■ Cluster description  in disjunctive
normal Form

Techniques for Improving the
Efficiency and Effectiveness

■ Hierarchical Variants of Cluster Algorithms
(for Improving the Effectiveness)

■ Scaling Up of Cluster Algorithms
(for Improving the Efficiency)

– Sampling Techniques

– Bounded Optimization Techniques

– Indexing Techniques

– Condensation Techniques
– Grid-based Techniques

Scalability Problems

■ Effectiveness degenerates

– with dimensionality (d)

– with noise level

■ Efficiency degenerates

– linearly with no of data points (N) and

– exponentially with dimensionality (d)

Hierarchical Variant of
WaveCluster [SCZ 98]

■ WaveCluster can be used to perform
multiresolution clustering

■ Using coarser grids, cluster start to
merge

Hierarchical Variant of
DENCLUE [HK 98]

■ DENCLUE is able to determine a hierarchy of
cluster using smoother kernels (                      )maxmin σσσ ≤≤

#clusters

σmin σmaxσ   σopt

Building Hierarchies (σ)



Scaling Up of Cluster Algorithms

■ Sampling Techniques [EKX 95]

■ Bounded Optimization Techniques [NH 94]

■ Indexing Techniques [BK 98]

■ Condensation Techniques [ZRL 96]

■ Grid-based Techniques [SCZ 98, HK 98]

Sampling [EKX 95]

■ R*-Tree Sampling

■ Comparison of Effectiveness versus
Efficiency (example CLARANS)

Bounded Optimization [NH 94]

■ CLARANS uses two bounds to restricts

the optimization: num_local, max_neighbor

■ Impact of the Parameter:
– num_local     Number of iterations

– max_neighbors     Number of tested 
neighbors per iteration

Indexing [BK 98]

■ Cluster algorithms and their index
structures
– BIRCH:   CF-Tree [ZRL 96]

– DBSCAN: R*-Tree [Gut 84]

X-Tree [BKK 96] (range queries)

– WaveCluster:   Grid / Array [SCZ 98]

– DENCLUE:   B+-Tree, Grid / Array [HK 98]

Condensing Data

■ BIRCH [ZRL 96]:
– Phase 1-2 makes a condensed

representation of the data (CF-tree)
– Phase 3-4 applies a separate cluster

algorithm to the leafs of the CF-tree

■ Condensing data is crucial for efficiency

Data CF-Tree condensed CF-Tree Cluster

R-Tree:  [Gut 84]

The Concept of Overlapping Regions

directory

data

level 1

directory
level 2

pages

. . . exact representation



Variants of the R-Tree
Low-dimensional
■ R+-Tree [SRF 87]

■ R*-Tree [BKSS 90]

■ Hilbert R-Tree [KF94]

High-dimensional

■ TV-Tree [LJF 94]

■ X-Tree [BKK 96]

■ SS-Tree [WJ 96]

■ SR-Tree [KS 97]

Effects of High Dimensionality

■ Data pages have large extensions
■ Most data pages touch the surface

of the data space on most sides

Location and Shape of Data Pages

The X-Tree [BKK 96]

(eXtended-Node Tree)
■ Motivation:

Performance of the R-Tree degenerates in
high dimensions

■ Reason: overlap in the directory

The X-Tree

Supernodes Normal Directory Nodes Data Nodes

root

Speed-Up of X-Tree over the R*-
Tree

Point Query 10 NN Query

Grid Approaches WaveCluster

■ WaveCluster [SCZ 98]

– Partition the data space by a grid → reduce the
number of data objects by making a small error

– Apply the wavelet-transformation to the reduced
feature space

– Find the connected components as clusters

■ Compression of the grid is crucial for the
efficiency

■ Does not work in high dimensional space!



Effects of High Dimensionality

■ The selectivity depends on the volume of the query

selectivity = 0.1 %

e

Selectivity of  Range Queries

⇒ no fixed ε-environment  (as in DBSCAN)

■ In high-dimensional data spaces, there exists a
region in the data space which is affected by ANY
range query (assuming uniformly distributed data)

Effects of High Dimensionality

Selectivity of  Range Queries

⇒ difficult to build an efficient index structure 

⇒ no efficient support of range queries (as in DBCLASD)

1
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■ Probability that a point is closer than 0.1
to a (d-1)-dimensional surface

⇒ no of directions (from center) increases exponentially

The Surface is Everything

Effects of High Dimensionality

■ Number  of  grid  cells
resulting from a binary
partitioning?
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⇒ grid cells can not be stored explicitly

⇒ most grid cells do not contain any data points

Effects of High Dimensionality

Number of Surfaces and Grid Cells 
■ Number of k-dimensional surfaces in a

d-dimensional hypercube?

d2

DENCLUE Algorithm [HK 98]

Basic Idea

■ Use Local Density Function which

approximates the Global Density Function

■ Use CubeMap Data Structure for efficiently

locating the relevant points

Definition
The local density              is defined as
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Local Density Function



CubeMap

Data Structure based on regular cubes for storing the data
and efficiently determining the density function

DENCLUE Algorithm

DENCLUE (D, σ, ξ)
)( (a) DBRDetermineMMBR ←

),,,( (d) ξσrCmapractorsDetDensAttclusters ←

),,( (b) σMBRDsDetPopCubeC p ←
),(     cpsp CopCubesDetHighlyPC ξ←
),,(, (c) σsppr CCConnectMapCmap ←

Summary and Conclusions

■ A number of effective and efficient Clustering
Algorithms is available for small to medium
size data sets and small dimensionality

■ Efficiency suffers severely for large
dimensionality (d)

■ Effectiveness suffers severely for large
dimensionality (d), especially in combination
with a high noise level

Open Research Issues

■ Efficient Data Structures for large N
and large d

■ Clustering Algorithms which work effectively
for large N, large d and large Noise Levels

■ Integrated Tools for an Effective Clustering
of High-Dimensional Data
(combination of automatic, visual and
interactive clustering techniques)
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